New DataValues system
Summary
Short comes of current DataType
DataType
is an enum type, we must use specific type after matching. For example, if we want to create deserializer/serializer byDataType
, we should always do matching. It does not mean that match is not necessary. If we want to add more and more functions toDataType
, matching may be very annoyment.DataType
represented as enum type, we can't use it as generic argument.DataType
may involve some nested datatypes, such asDataType::Struct
, but we putDataField
insideDataType
, it's logically unreasonable。Hard to put attributes into enum based
DataType
, such as nullable attribute #3726 #3769
Too many concepts about column (Series/Column/Array)
- DataColumn is an enum, including
Constant(value)
andArray(Series)
pub enum DataColumn {
// Array of values.
Array(Series),
// A Single value.
Constant(DataValue, usize),
}
- Series is a wrap of
SeriesTrait
pub struct Series(pub Arc<dyn SeriesTrait>);
- SeriesTrait can implement various array,using many macros.
pub struct SeriesWrap<T>(pub T);
impl SeriesTrait for SeriesWrap<$da> {
fn data_type(&self) -> &DataType {
self.0.data_type()
}
fn len(&self) -> usize {
self.0.len()
}
...
}
- For functions, we must consider about
Constant
case forColumn
, so there are many branch matching.
match (
columns[0].column().cast_with_type(&DataType::String)?,
columns[1].column().cast_with_type(&DataType::UInt64)?,
) {
(
DataColumn::Constant(DataValue::String(input_string), _),
DataColumn::Constant(DataValue::UInt64(times), _),
) => Ok(DataColumn::Constant(
DataValue::String(repeat(input_string, times)?),
input_rows,
)),
(
DataColumn::Constant(DataValue::String(input_string), _),
DataColumn::Array(times),
)
...
New DataValues system design
Introduce DataType
as a trait
#[typetag::serde(tag = "type")]
pub trait DataType: std::fmt::Debug + Sync + Send + DynClone {
fn data_type_id(&self) -> TypeID;
fn is_nullable(&self) -> bool {
false
}
..
}
Nullable is a special case of DataType
, it's a wrapper of DataType
.
pub struct DataTypeNull {inner: DataTypeImpl}
Simplify DataValue
pub enum DataValue {
/// Base type.
Null,
Boolean(bool),
Int64(i64),
UInt64(u64),
Float64(f64),
String(Vec<u8>),
// Container struct.
Array(Vec<DataValue>),
Struct(Vec<DataValue>),
}
DataValue
can convert into proper DataType
by it's value.
// convert to minialized data type
pub fn data_type(&self) -> DataTypeImpl {
match self {
DataValue::Null => Arc::new(NullType {}),
DataValue::Boolean(_) => BooleanType::new_impl(),
DataValue::Int64(n) => {
if *n >= i8::MIN as i64 && *n <= i8::MAX as i64 {
return Int8Type::new_impl();
}
...
}
Also, DataValue
can convert into rust primitive values and vice versa.
Uniform Series/Array/Column
into Column
Column
as a trait
pub type ColumnRef = Arc<dyn Column>;
pub trait Column: Send + Sync {
fn as_any(&self) -> &dyn Any;
/// Type of data that column contains. It's an underlying physical type:
/// UInt16 for Date, UInt32 for DateTime, so on.
fn data_type_id(&self) -> TypeID {
self.data_type().data_type_id()
}
fn data_type(&self) -> DataTypeImpl;
fn is_nullable(&self) -> bool {
false
}
fn is_const(&self) -> bool {
false
}
..
}
- Introduce
Constant column
Constant column
is a wrapper of aColumn
with a single value(size = 1)#[derive(Clone)]
pub struct ConstColumn {
length: usize,
column: ColumnRef,
}
impl Column for ConstColumn {..}
- Introduce
nullable column
nullable column
is a wrapper of aColumn
and keep an extra bitmap to indicate null values.
pub struct NullableColumn {
validity: Bitmap,
column: ColumnRef,
}
impl Column for NullableColumn {..}
- No extra cost convert from or into Arrow's column format.
fn as_arrow_array(&self) -> common_arrow::ArrayRef {
let data_type = self.data_type().arrow_type();
Arc::new(PrimitiveArray::<T>::from_data(
data_type,
self.values.clone(),
None,
))
}
- Keep
Series
as a tool struct, this may help to fast generate a column.
// nullable column from options
let column = Series::from_data(vec![Some(1i8), None, Some(3), Some(4), Some(5)]);
// no nullable column
let column = Series::from_data(vec![1,2,3,4);
- Downcast into the specific
Column
impl Series {
/// Get a pointer to the underlying data of this Series.
/// Can be useful for fast comparisons.
/// # Safety
/// Assumes that the `column` is T.
pub unsafe fn static_cast<T>(column: &ColumnRef) -> &T {
let object = column.as_ref();
&*(object as *const dyn Column as *const T)
}
pub fn check_get<T: 'static + Column>(column: &ColumnRef) -> Result<&T> {
let arr = column.as_any().downcast_ref::<T>().ok_or_else(|| {
ErrorCode::UnknownColumn(format!(
"downcast column error, column type: {:?}",
column.data_type()
))
});
arr
}
}
- Convinient way to view a column by
ColumnViewer
No need to care about Constants
and Nullable
.
let wrapper = ColumnViewer::<i8>::try_create(&column)?;
assert_eq!(wrapper.len(), 10);
assert!(!wrapper.null_at(0));
for i in 0..wrapper.len() {
assert_eq!(*wrapper.value(i), (i + 1) as i8);
}
Ok(())
let wrapper = ColumnViewer::<bool>::try_create(&column)?;
let c = wrapper.value(0);
let wrapper = ColumnViewer::<&str>::try_create(&column)?;
let c = wrapper.value(1);
Ok(())
TODO
- Make
datavalues2
more mature. - Merge
datavalues2
into Databend.